Exploiting the spatial and spectral capabilities of MAAT@GTC to shed light on the kilonova phenomenology L. Izzo (DARK/NBI)

Introduction

August 17, 2017

GW emission in BNS merger

(LVC 2017)

Introduction

r-process

"Neutrons combine to form large compounds faster than the newly formed conglomerates break up again. In this way, heavy elements can grow from individual neutrons within less than a second."

(Courtesy MPIA)

GW170817

(Kasliwal+ 2017)

り^やく

UV/Optical/NIR Light Curves

(Villar+ 2017) thermal emission by radioactive decay of heavy elements synthesized in multicomponent (2-3) ejecta!

Geometry and properties of the different ejecta components

Tidal Ejecta

unbound by hydrodynamic interaction and gravitational torques

Secular – isotropic

accretion disk matter unbound by viscous and nuclear heating

Red Macronova "equatorial"

Peaks at days - 1 week after the merger

Shock-heated

squeezed mass at NS contact interface ejected by remnant pulsations

Disk Winds

neutrino absorption or magnetically launched winds

6 Courtesy S. Ascenzi & M. Branchesi

Blue Macronova "Polar"

Peaks at 1-2 day after the merger

Constraints on HO

(Dhawan+ 2020)

Constraints on the inclination angle of the sGRB jet associated with GW170817 can improve H0 estimate

D16<

KN 170817 / AT 2017gfo

First spectral identification of the kilonova emission

- the data revealed signatures of the radioactive decay of r-process nucleosynthesis (Pian et al. 2017, Smartt et al. 2017)
- BNS merger site for heavy element production in the Universe!

(Cote et al. 2018, Rosswog et al. 2017)

Credit: ESO/E. Pian et al./S. Smartt & ePESSTO/L. Calçada Courtesy M. Branchesi

KN 170817 / AT 2017gfo

The low S/N optical spectrum at 1d matches very well that of SN2008D/ XRF080109 at similar phase

There is no evidence for a kilonova

In a couple of days the peak of the spectral energy distribution shifts to the near infrared. Broad spectral features appear that are completely different from that of all know SN types

(Buckley+ 2017, McCully+ 2018

MAAT & kilonovae

identification of the neutron-capture element transition **Sr II 869 nm** (triplet)

(Watson+ 2019) **ワ**へ尺く

MAAT & kilonovae

Follow-up of newly-discovered KNe

AT 2017gfo as observed by MUSE

NGC 4993

NGC 4993

Stellar mass = 1.4×10^{11} MSun

almost no ongoing SFR

small offset wrt the centroid of the galaxy

14(Levan+ 2017)

NGC 4993

old stellar population -> old progenitor for the BNS (>~ 10⁹ yrs)

¹⁵ (Levan+ 2017)

a first sGRB-KN sample

late-time rest-frame I-band excess in sGRB afterglow lightcurves

GRB 150101B	0.13	early
GRB 160821B	0.162	late
GRB 050709	0.16	late*
GRB 060614	0.125	late*
GRB 070809	0.22	hostless
GRB 130603B	0.36	late
GRB 170817A	0.008	early

late-to-early type ratio 2:1

MAAT in the context of LVC runs

D16<

Conclusions

- Important contribution of MAAT to KN science
- ToO observations of very faint sources possible only with 8-10m class telescopes
- Ejecta composition at early (bright) KN phases
- Possibility to study the environment of new KNe
- Prominent role in the following O4 (2022-2023) and O5 (2025?) LVC runs

Thank you !!!

late-time rest-frame I-band excess in sGRB afterglow lightcurves

GRB 150101B	0.13	early
GRB 160821B	0.162	late
GRB 050709	0.16	late*
GRB 060614	0.125	late*
GRB 070809	0.22	hostless
GRB 130603B	0.36	late
GRB 170817A	0.008	early

late-to-early type ratio 2:1

GRB 160821B

22

GRB 130603B

23

GRB 060614

(Zhang+ 2006, Yang+ 2015, Izzo+ in prep)

り^やく